Soal Un Aplikasi Turunan

Soal Un Aplikasi Turunan

soal aplikasi turunan​

Daftar Isi

1. soal aplikasi turunan​


Nilai minimum dari y = 2x - 2cosx pada interval π ≤ x ≤ 3π/2 adalah 2 + 2π.

PEMBAHASAN

Turunan atau Diferensial merupakan pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai input. Salah satu fungsi dari turunan adalah menentukan nilai minimum/maksimum dari suatu fungsi. Dimana suatu fungsi akan memiliki nilai minimum/maksimum pada saat :

f'(x) = 0

dengan :

f'(x) = turunan pertama fungsi.

Dari  f'(x) = 0, kita akan memperoleh titik-titik stasioner, misal x = p. Nilai x = p ini kita substitusi ke fungsi awal untuk mencari nilai maksimum/ minimum fungsi.

Untuk fungsi dengan interval tertutup a ≤ x ≤ b, titik titik ujung inteval juga termasuk titik - titik statisioner.

.

DIKETAHUI

[tex]y=2x-2cosx[/tex]

.

DITANYA

Tentukan nilai minimum fungsi y pada interval [tex]\displaystyle{\pi\leq x\leq \frac{3\pi}{2} }[/tex].

.

PENYELESAIAN

[tex]y=2x-2cosx[/tex]

[tex]y'=2+2sinx[/tex]

.

y minimum pada saat :

[tex]y'=0[/tex]

[tex]2+2sinx=0[/tex]

[tex]2sinx=-2[/tex]

[tex]sinx=-1[/tex]

[tex]\displaystyle{x=\frac{3\pi}{2} }[/tex]

.

Titik batas interval juga termasuk titik stasioner. Sehingga diperoleh dua titik stasioner, yaitu [tex]\displaystyle{x=\pi~dan~x=\frac{3\pi}{2}}[/tex].

.

Cek nilai x ke fungsi y :

Untuk x = π :

[tex]\displaystyle{y=2(\pi)-2cos(\pi)}[/tex]

[tex]\displaystyle{y=2\pi-2(-1)}[/tex]

[tex]\displaystyle{y=2\pi+2}[/tex]

.

Untuk [tex]\displaystyle{x=\frac{3\pi}{2}}[/tex] :

[tex]\displaystyle{y=2\left ( \frac{3\pi}{2} \right )-2cos\left ( \frac{3\pi}{2} \right )}[/tex]

[tex]\displaystyle{y=3\pi-2\left ( 0 \right )}[/tex]

[tex]y=3\pi[/tex]

.

Karena 2π + 2 < 3π, maka nilai minimum y = 2π + 2.

.

KESIMPULAN

Nilai minimum dari y = 2x - 2cosx pada interval π ≤ x ≤ 3π/2 adalah 2 + 2π.

.

PELAJARI LEBIH LANJUTMencari nilai maksimum fungsi : https://brainly.co.id/tugas/37710745Mencari nilai maksimum fungsi : https://brainly.co.id/tugas/34988413Mencari nilai minimum fungsi : https://brainly.co.id/tugas/29381131

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Turunan

Kode Kategorisasi: 11.2.9


2. soal aplikasi turunan​


Jawaban:

berikut pen jelaskan nya!!!!!


3. soal aplikasi turunan​


Untuk pertanyaan pertama Anda, sapi dapat memakan berbagai jenis tumbuhan selain rumput. Mereka biasanya memakan apa yang tersedia di padang rumput, termasuk berbagai jenis rumput, semak, dan dedaunan. Beberapa sapi juga diberi pakan tambahan seperti silase (rumput atau jagung yang difermentasi), jerami, dan pakan konsentrat yang mengandung biji-bijian dan protein.

Untuk pertanyaan kedua Anda, fungsi f(x) = sin x - cos x naik atau turun tergantung pada turunan pertamanya. Turunan pertama dari fungsi ini adalah f'(x) = cos x + sin x.

Untuk mengetahui kapan fungsi ini naik atau turun, kita perlu mencari nilai x di mana f'(x) = 0. Dalam hal ini, kita mendapatkan x = π/4 dan x = 5π/4.

Jadi, fungsi f(x) = sin x - cos x naik pada interval 0 ≤ x < π/4 dan π < x ≤ 5π/4, dan turun pada interval π/4 < x ≤ π dan 5π/4 < x < 2π.

Mohon diperhatikan bahwa penjelasan ini berlaku jika kita membatasi x dalam interval 0 hingga 2π, karena fungsi sinus dan kosinus adalah fungsi periodik dan polanya akan berulang setiap 2π.


4. sebutkan 3 aplikasi pengolah kata pada komputer jelaskan pula kelebihan tiap apliaksi dibandingkan dengan aplikasi lainnya ? ​


Jawaban:

Misalkan pada komputer dg sistem operasi Windows:

1. Notepad

2. Wordpad

3. Ms. Word

Penjelasan:

1. Kelebihan Notepad ialah:

- aplikasi pengolah kata yg sangat ringan

- tidak membutuhkan kapasitas harddisk yg besar

- tidak perlu memory komputer yg tinggi.

2. Kelebihan Wordpad ialah:

- aplikasi pengolah kata yg cukup sederhana karena ada beberapa fitur seperti Ms. Word

- mampu membuka dan menyimpan data dg format .doc

- pemakaiannya mudah karena memiliki interface (antar muka) mirip Ms. Word.

3. Kelebihan Ms. Word ialah:

- aplikasi pengolah kata yg sangat lengkap fiturnya.

- Pada versi terbaru, mendukung penyimpanan data dg format PDF

- dokumen yg disimpan, dapat diamankan memakai password

Amatilah lampiran:

1. Notepad ditunjukkan tanda panah merah

2. Wordpad ditunjukkan tanda panah hijau

3. Ms. Word ditunjukkan tanda panah kuning


5. Aplikasi yang memuat soal² Latihan Try Out /UN terbaik itu apa??? (Yg bisa diunduh di play store)


Coba Ruang guru disitu ada soal buat latihan UN SD, SMP, SMA dan juga bisa untuk menanyakan PR juga.

6. contoh soal rumus fibonacci Un=Un-1 + Un-2......


Dua suku berikutnya dari barisan: 1,2,3,5,8,13...adalah...
a.20,29
b.21,34
c.22,23
d.20,28

7. artinya aplikasi apa tolong di jawab bukan aplilasi di hp ​


Jawaban:

suatu subkelas perangkat lunak komputer yang memanfaatkan kemampuan komputer langsung untuk melakukan suatu tugas yang diinginkan pengguna

Dah gitu aja:v

radak sori kalo salah:v


8. tolong dong ada yang tau ga aplikasi soal soal un sd yang bagus?


Aplikasi Cerdas Cermat ada banyak seri dari Sd-SMP-SMA,

SEMOGA MEMBANTU,

9. fungsi aplikasi turunan fungsi​


Jawaban:

Turunan fungsi biasa digunakan saat menentukan gradien garis singgung suatu kurva, menentukan dimana interval naik turun fungsi, menentukan jenis nilai stasioner dan beberapa aplikasi pada persamaan gerak atau masalah terkait maksimum dan minimum.

Jawaban:

Turunan fungsi biasa digunakan saat menentukan gradien garis singgung suatu kurva, menentukan dimana interval naik turun fungsi, menentukan jenis nilai stasioner dan beberapa aplikasi pada persamaan gerak atau masalah terkait maksimum dan minimum

Penjelasan:

maaf ya kak kalo salah


10. contoh aplikasi turunan fungsi naik dan fungsi turun


temometer untuk pengukur gelombang

11. Nama aplikasi yang menyediakan kumpulan soal un kelas 9 serta pembahasannya???


pasti brainly lah.... disini kan kumpulan soal"

12. contoh soal tentang aplikasi turunan


Berikut ini contoh soal tentang aplikasi turunan. 

Suatu kotak tanpa tutup yang alasnya berbentuk persegi akan dibuat dari selembar karton. Volume kotak itu [tex]4 m^{3} [/tex]. Tentukan ukuran kotak agar bahan yang digunakan sedikit mungkin.

Semangat belajarnya ya dik. Gbu

13. penjelasan aplikasi turunan


Turunan fungsi biasa digunakan saat menentukan gradien garis singgung suatu kurva, menentukan dimana interval naik turun fungsi, menentukan jenis nilai stasioner dan beberapa aplikasi pada persamaan gerak atau masalah terkait maksimum dan minimum.
apa ini membantumu,maaf bila salah


14. soal aplikasi turunan​


Jawaban:

semoga Membantu ya , tinggaL geser, kalo gak bisa di geser update dulu brainly nyao(〃^▽^〃)o!!


15. Soal aplikasi turunan fungsi


Jawaban:

1. B.21

2. B.400 cm2

3. D.112


16. soal aplikasi turunan​


semoga membantuuu!!!!!!!!!!!!!!!!!!!


17. tolong buatkn soal dan jawaban aplikasi turunan


100×5=
12÷6=
11111-2=

18. sore ni mau nanya ada tidak aplikasi android tentang soal un dan pembasaannya


ada cari aja di playstore pasti ketemu

19. 5 contoh soal un aplikasi pecahan dan jawaban nya


soal un kelas brpa kak?

20. Kalkulus aplikasi turunan implisit


Jawaban:

ngga tau....

... maaf saya nggak tau


21. Luas maksimum dari persegi panjang pada gambar di bawah ini adalah... - Soal Terlampir - [Matematika: Aplikasi Turunan]


Jawab:

10 satuan luas

Penjelasan dengan langkah-langkah:

Terlampir di gambar

Cara cepatnya tinggal setengahin titik dari x dan y kemudian kalikan langsung ketemu.

Contoh yang bangun 1

X = 6 tengahnya 3

Y = 4 tengahnya 2

Kalikan jadi 6 satuan luas

Hal yang sama dilakukan ke bangun 2

=CMIIW=


22. Tolong bikinin aku soal aplikasi turunan serta pembahasannya, mohon bantuannya kaka..


1. Tentukan gradien dari kurva dengan persamaan y=4x^2 + 2x -1 dititik berabsis x = 1/2
Jawab : turunan = 8x +2
gradien untuk x = 1/2 => 8(1/2) + 2 = 6
* turunan sama dengan gradien.

2.Diberikan sebuah bola berjari jari r cm dengan volume = V(x) = f(r) = 4/3Πr^3 . Hitunglah laju perubahan volume bola terhadap jari jari r saat r = 3
Jawab : turunan = 4Πr^2
Laju perubahan saat r =3 = 4Π(3^2) = 36 Π
Jadi laju perubahan volume bola V terhadap jari jari r saat r =3 adalah 36Π cm ^2

3.Diberikan fungsi f(x) = x^3 -6x^2 +9x +1 , tentukan interval x agar kurva selalu naik
Jawab : Kurva selalu naik jika turunan >0
Maka :
3x^2 -12x +9 >0
x^2 -4x +3 >0
(x-1)(x-3) >0
x>3 atau x<1

23. buatlah 10 contoh soal cerita aplikasi turunan trigonometri dalam kehidupan sehari-hari


Jawaban:

Turunan fungsi trigonometri yaitu proses matematis untuk menemukan turunan pada suatu fungsi trigonometri ataupun tingkat perubahan terkait dengan suatu variabelnya. Fungsi trigonometri yang biasa digunakan yaitu sin(x), cos(x) dan tan(x). Contoh: turunan “f(x) = sin(x)” ditulis “f ′(a) = cos(a)”. “f ′(a)” yaitu tingkat perubahan sin(x) di titik “a”.


24. jelaskan apilkasi apilkasi komunikasi dataJelaskan aplikasi-aplikasi komuni komunikasi data ​


Jawaban:

1. Gmail

2. Whatsapp

3. Skype

4. Kaskus

5. Google Hangouts


25. cara mengubah ukuran suatu aplikasi cbt un


ctrl + f4 dua kali kemudian enter

26. Apa sebab di turunkannya sura al-ma`un


Karena perlakuan hina yang diperbuat abu lahabUNTUK MEMBERI PETUNJUK AGAR TIDAK BERBUAT SEMENA MENA TERHADAP ANAK YATIM DAN TIDAK MENGHARDIK ORANG YANG MEMINTA MINTA

27. aplikasi turunan dan pembahasannya


urunan fungsi biasa digunakan saat menentukan gradien garis singgung suatu kurva, menentukan dimana interval naik turun fungsi, menentukan jenis nilai stasioner dan beberapa aplikasi pada persamaan gerak atau masalah terkait maksimum dan minimum.

28. apa pendapat kmu terhadap aplikasih presensi aplikasi adroid​


aplikasi presensi Android dapat membantu mempermudah pengaturan dan pemantauan absensi. Ini juga membuat proses lebih efisien dan akurat. Namun, pastikan aplikasi tersebut aman dan sesuai dengan kebutuhan dan kebijakan perusahaan.


29. Aplikasi turunan fungsi TRIGONOMETRI ​


Jawaban:

L maksimum = 2 satuan luas


30. Kira-kira berapa persen soal UN 2015 yang sama dengan soal UN 2014 ?


kemungkinan 85 persenMungkin hanya 70%

#tdktaujgsih



31. aplikasih berikut yang tidak termasuk dalam aplikasi perkantoran adalah


‎ apk winamp.

maaf kl salah setau saya itu

.


32. apa perbedaan aplikasi padlet dengan aplikasi2 lainnya? kenapa padlet lebih baik?​


Jawaban:

Padlet adalah aplikasi daring gratis yang paling tepat diilustrasikan sebagai papan tulis daring

Catatan yang di-posting oleh guru dan siswa dapat berisi tautan, video, gambar, dan file dokumen. Ketika Anda mendaftar Padlet, Anda dapat membuat banyak “dinding” atau papan atau halaman tulisan online sesuka Anda


33. apa nama aplikasi latihan soal UN SMP yang terbagus dan terbaik ?


Detik-Detik UN SMP aku belajar disitu dulu alhamdulillah byk yg muncul mnding beli aja bukunya ka lebih baik gitu buku Fokus Un banyak banget yang muncul tau

34. cari soal dan jawaban aplikasi pada logaritma (2soal+jawaban)


Mapel : Matematika
Kelas : X SMA
Bab : Eksponen dan Logaritma

Pembahasan :
Ada pada gambar...
2 soal logartima dan jawaban+pembahasan

35. Buatlah 1 soal aplikasi turunan dalam kehidupan sehari-hari​


jawaban ada pada gambar yah!


36. Buatlah 2 contoh soal aplikasi turunan dalam bidang ekonomi


Jawaban:

semoga bermanfaat ya..


37. Contoh soal aplikasi turunan maksimum atau minimum pada suatu peristiwa !


Jawaban:

Ada di penjelasan

Penjelasan dengan langkah-langkah:

sebuah peluru ditembakkan dari ketinggian tertentu dg rumus h (t) = 120t - 5t², dimana t adalah detik. hitunglah ketinggian maksimum yg dicapai peluru?


38. Tolongin ya guys soal aplikasi turunan, sama caranya juga yaa, makasi seyeng


mungkin jawabannya (c).(-2,0). dan(4,108)

maaf kalau salah

yg menjawab Anggi


39. Mohon bantuannya Aplikasi turunan​


1.

f(x) = –x³ + 3x² – 4x + 5

Titik singgung A ( 3 , –7 )

f'(x) = –3x² + 6x – 4

Gradien garis singgung di titik A ( m ) :

m = f'(3) = –3.[3]² + 6.[3] – 4

m = –27 + 18 – 4

m = –13

Persamaan garis singgung kurva di titik A :

y – yₐ = m(x – xₐ)

y – [–7] = –13(x – 3)

y + 7 = –13x + 39

y + 13x – 32 = 0

2.

f(x) = √(2x + 3) = (2x + 3)^½

f'(x) = ½.(2).(2x + 3)^[–½]

f'(x) = 1 / √(2x + 3)

Garis singgung tegak lurus dengan garis : 3x + y – 2 = 0

» y = –3x + 2

» m = –3

Untuk garis yang saling tegak lurus berlaku : m₁ × m₂ = –1

Sehingga, gradien garis singgung kurva (mₛ) = –1 / m = –1 / –3 = ⅓

f'(x) = mₛ

1 / √(2x + 3) = ⅓

√(2x + 3) = 3

<=> kuadratkan kedua ruas

(2x + 3) = 9

2x = 9 – 3 = 6

x = 3

Masukkan nilai x ke f(x) :

f(3) = √(2.[3] + 3) = √(6 + 3) = √9 = 3

Sehingga, didapatkan titik singgung S ( 3 , 3 ).

Persamaan garis singgung di titik S dengan gradien mₛ :

y – yₛ = mₛ(x – xₛ)

y – 3 = ⅓(x – 3)

<=> kedua ruas dikalikan 3

3y – 9 = x – 3

x – 3y + 6 = 0

3.

Fungsi y = f(x) = x³ + 3x² – 45x + 4

f'(x) = 3x² + 6x – 45

Titik maksimum / minimum tercapai ketika :

f'(x) = 0

3x² + 6x – 45 = 0

<=> kedua ruas dibagi 3

x² + 2x – 15 = 0

(x + 5)(x – 3) = 0

Didapatkan : x₁ = – 5 & x₂ = 3

f'(x) = 3x² + 6x – 45

f"(x) = 6x + 6

Nilai maksimum tercapai ketika f"(x) < 0, dan nilai minimum tercapai ketika f"(x) > 0

» untuk x₁ = – 5 :

f"(–5) = 6.[–5] + 6 = –30 + 6 = –24 < 0 => nilai maksimum => grafik fungsi turun

» untuk x₂ = 3 :

f"(3) = 6.[3] + 6 = 18 + 6 = 24 > 0 => nilai minimum => grafik fungsi naik

Maka, interval naik fungsi tersebut adalah : x > 3

4.

f(x) = ⅓x³ – 3x² + 5x + 3

f'(x) = x² – 6x + 5

f"(x) = 2x – 6

Titik stasioner tercapai ketika :

f'(x) = 0

x² – 6x + 5 = 0

(x – 1)(x – 5) = 0

Didapatkan : x₁ = 1 & x₂ = 5

» untuk x₁ = 1 :

f"(1) = 2.[1] – 6 = 2 – 6 = –4 < 0

=> nilai maksimum => grafik fungsi turun

» untuk x₂ = 5 :

f"(5) = 2.[5] – 6 = 10 – 6 = 4 > 0 => nilai minimum => grafik fungsi naik

Maka, interval turun fungsi adalah : 1 < x < 5

5.

f(x) = x³ – 6x² + 9x + 1

f'(x) = 3x² – 12x + 9

f"(x) = 6x – 12

Titik stasioner tercapai ketika :

f'(x) = 0

3x² – 12x + 9 = 0

<=> kedua ruas dibagi 3

x² – 4x + 3 = 0

(x – 1)(x – 3) = 0

Didapatkan : x₁ = 1 & x₂ = 3

» untuk x₁ = 1 :

f"(1) = 6.[1] – 12 = 6 – 12 = –6 < 0

=> nilai maksimum

Masukkan nilai x₁ = 1 ke f(x) :

f(1) = [1]³ – 6.[1]² + 9.[1] + 1

f(1) = 1 – 6 + 9 + 1 = 5

Didapatkan titik maksimum fungsi ( 1 , 5 )

» untuk x₂ = 3 :

f"(3) = 6.[3] – 12 = 18 – 12 = 6 > 0 => titik minimum

Masukkan nilai x₂ = 3 ke f(x) :

f(3) = [3]³ – 6.[3]² + 9.[3] + 1

f(1) = 27 – 54 + 27 + 1 = 1

Didapatkan titik minimum fungsi ( 3 , 1 )

Jadi, titik maksimum fungsi ( 1 , 5 ) dan titik minimum fungsi ( 3 , 1 ).

6.

y = f(x) = ax³ + bx²

f'(x) = 3ax + 2b

Diketahui nilai stasioner di x = 1 adalah 4.

=> f(1) = 4

=> a.[1]³ + b.[1]² = 4

=> a + b = 4 »» ( i )

Nilai stasioner tercapai ketika :

f'(x) = 0

f'(1) = 0

3a.[1] + 2b = 0

3a + 2b = 0 »» ( ii )

Eliminasikan ( ii ) dan ( i ) :

( ii ) : 3a + 2b = 0

( i ) × 2 : 2a + 2b = 8

_______________ —

a = –8

Masukkan nilai a ke ( i ) :

a + b = 4

–8 + b = 4

b = 4 + 8

b = 12

Sehingga didapatkan : a – b = – 8 – 12 = –20


40. Soal un ipa tt penyakit turunan yang menyebabkan darah yang keluar lama membeku itu namnya apa ya...


penyakit hemofilia : menyebabkan darah sulit membekuhemofilia (darah sulit membeku)

Video Terkait

Kategori matematika